Track 2: Case Study "Nephrotoxicity in the rat"

Background

PharmX Inc., a pharmaceutical company develops a series of therapeutics for a life threatening disease. Data generated in subchronic toxicity studies in the rat obtained with the lead compound suggest a risk for tubular nephrotoxicity for a series of compounds.

PharmX decided to set up a research project to develop known, valid biomarkers (BMs) for tubular nephrotoxicity in the rat based on available, exploratory BMs.

The envisaged deliverable of this project is a process map on how to develop known, valid BMs allowing to

- (i) do an improved ranking of follow-up compounds in the rat (short term),
- (ii) bridge the BMs into clinical application (mid term), and
- (iii) develop drugs with improved safety profile (long term).

Questions

- (1) What is the profile of an ideal BM?
 - Early
 - Sensitive
 - Specific
 - Predictive
 - Reproducible
 - Robust
 - Accurate/precise
 - Accessible sample
 - Inexpensive
 - Biologically/ mechanistically relevant
 - Superior to existing markers
 - Other?
- (2) The path from exploratory to known valid BM
- (3) What are the elements of BM validation?
 - Technical/Assay
 - Intra- and inter-sample
 - Intra-and inter-laboratory
 - Technical validation of assay
 - Statistical validation plan
 - Mapping to gold standard
 - Other?

- Biological model
 - Intra- and inter-species
 - Demonstration of desired profile
 - Biochemical, mechanistic relevance
 - Other?
- (4) Who should be involved in the validation and acceptance of BMs?
 - Exploratory BMs
 - Probable valid BMs
 - Known valid BMs
- (5) What is needed for regulatory acceptance of a BM?
- (6) Can we reach a consensus about the process map for biomarker validation?
- (7) What challenges do we face when bridging BMs derived from preclinical experiments are applied in the clinic?
- Animals
- Healthy animals models
- Animal disease models
- Target organs easily accessible
- Limited predictivity for humans
 - Potentially different mechanisms
 - Difficulty in making quantitative predictions about toxic effects
 - Verbal feedback not possible
 - Other?
- Human
- Variability in available population of healthy volunteers
 - Lifestyle
 - Co-medication
 - Predisposition for disease
- Variability in available patient population
 - Lifestyle
 - Co-medication
 - Predisposition for disease
 - State of disease
- Peripheral tissues accessible
- Diseases or disease subtypes may be poorly characterized
- Verbal feedback possible
- Patient privacy
- Other?

Fig. 1. Proposed Baseline Process Map for Validation of Biomarkers of Preclinical Drug Safety Assessment

